Bulk entanglement spectrum reveals quantum criticality within a topological state.
نویسندگان
چکیده
A quantum phase transition is usually achieved by tuning physical parameters in a Hamiltonian at zero temperature. Here, we show that the ground state of a topological phase itself encodes critical properties of its transition to a trivial phase. To extract this information, we introduce an extensive partition of the system into two subsystems both of which extend throughout the bulk in all directions. The resulting bulk entanglement spectrum has a low-lying part that resembles the excitation spectrum of a bulk Hamiltonian, which allows us to probe a topological phase transition from a single wave function by tuning either the geometry of the partition or the entanglement temperature. As an example, this remarkable correspondence between the topological phase transition and the entanglement criticality is rigorously established for integer quantum Hall states.
منابع مشابه
Tensor network implementation of bulk entanglement spectrum
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Many topologically nontrivial states of matter possess gapless degrees of freedom on the boundary, and when these b...
متن کاملAnalysis of the Quantum Spin Hall and Quantum Anomalous Hall Effects in a Two-Dimensional Decorated Lattice Using Entanglement Spectrum
Since the discovery of the quantum Hall effect (QHE) in 1980 [1], topological states of matter have been extensively investigated [2, 3]. A full family of quantum Hall like states was recently discovered experimentally, including quantum spin Hall effect (QSHE) and quantum anomalous Hall effect (QAHE) [4–6]. QHE-like states are examples of topologically nontrivial phases, distinguished from tri...
متن کاملEntanglement convertibility by sweeping through the quantum phases of the alternating bonds XXZ chain
We study the entanglement structure and the topological edge states of the ground state of the spin-1/2 XXZ model with bond alternation. We employ parity-density matrix renormalization group with periodic boundary conditions. The finite-size scaling of Rényi entropies S2 and S∞ are used to construct the phase diagram of the system. The phase diagram displays three possible phases: Haldane type ...
متن کاملTeleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel
We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...
متن کاملTopological orders in Silicon photonics
Topological features – global properties which are not discernible locally – have attracted tremendous research attention in many fields of physics, ranging from condensed matter to ultra cold gases. Recently, photonic systems have been under investigation to explore various types of topological orders and to potentially develop robust optical devices. In this project, we investigated various a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 113 10 شماره
صفحات -
تاریخ انتشار 2014